skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Namin, Akbar"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Internet of Things (IoT) is a network of sensors that helps collect data 24/7 without human intervention. However, the network may suffer from problems such as the low battery, heterogeneity, and connectivity issues due to the lack of standards. Even though these problems can cause several performance hiccups, security issues need immediate attention because hackers access vital personal and financial information and then misuse it. These security issues can allow hackers to hijack IoT devices and then use them to establish a Botnet to launch a Distributed Denial of Service (DDoS) attack. Blockchain technology can provide security to IoT devices by providing secure authentication using public keys. Similarly, Smart Contracts (SCs) can improve the performance of the IoT–blockchain network through automation. However, surveyed work shows that the blockchain and SCs do not provide foolproof security; sometimes, attackers defeat these security mechanisms and initiate DDoS attacks. Thus, developers and security software engineers must be aware of different techniques to detect DDoS attacks. In this survey paper, we highlight different techniques to detect DDoS attacks. The novelty of our work is to classify the DDoS detection techniques according to blockchain technology. As a result, researchers can enhance their systems by using blockchain-based support for detecting threats. In addition, we provide general information about the studied systems and their workings. However, we cannot neglect the recent surveys. To that end, we compare the state-of-the-art DDoS surveys based on their data collection techniques and the discussed DDoS attacks on the IoT subsystems. The study of different IoT subsystems tells us that DDoS attacks also impact other computing systems, such as SCs, networking devices, and power grids. Hence, our work briefly describes DDoS attacks and their impacts on the above subsystems and IoT. For instance, due to DDoS attacks, the targeted computing systems suffer delays which cause tremendous financial and utility losses to the subscribers. Hence, we discuss the impacts of DDoS attacks in the context of associated systems. Finally, we discuss Machine-Learning algorithms, performance metrics, and the underlying technology of IoT systems so that the readers can grasp the detection techniques and the attack vectors. Moreover, associated systems such as Software-Defined Networking (SDN) and Field-Programmable Gate Arrays (FPGA) are a source of good security enhancement for IoT Networks. Thus, we include a detailed discussion of future development encompassing all major IoT subsystems. 
    more » « less
  2. Anomaly detection in time-series data is an integral part in the context of the Internet of Things (IoT). In particular, with the advent of sophisticated deep and machine learning-based techniques, this line of research has attracted many researchers to develop more accurate anomaly detection algorithms. The problem itself has been a long-lasting challenging problem in security and especially in malware detection and data tampering. The advancement of the IoT paradigm as well as the increasing number of cyber attacks on the networks of the Internet of Things worldwide raises the concern of whether flexible and simple yet accurate anomaly detection techniques exist. In this paper, we investigate the performance of deep learning-based models including recurrent neural network-based Bidirectional LSTM (BI-LSTM), Long Short-Term Memory (LSTM), CNN-based Temporal Convolutional (TCN), and CuDNN-LSTM, which is a fast LSTM implementation supported by CuDNN. In particular, we assess the performance of these models with respect to accuracy and the training time needed to build such models. According to our experiment, using different timestamps (i.e., 15, 20, and 30 min), we observe that in terms of performance, the CuDNN-LSTM model outperforms other models, whereas in terms of training time, the TCN-based model is trained faster. We report the results of experiments in comparing these four models with various look-back values. 
    more » « less
  3. Auditory icons are naturally occurring sounds that systems play to convey information. Systems must convey complex messages. To do so, systems can play: 1) a single sound that represents the entire message, or 2) a single sound that represents the first part of the message, followed by another sound that represents the next part of that message, etc. The latter are known as concatenated auditory icons. To evaluate those approaches, participants interpreted single and concatenated auditory icons designed to convey their message well and poorly. Single auditory icons designed to convey their message well were correctly interpreted more often than those designed to convey their message poorly; that was not true for concatenated auditory icons. Concatenated auditory icons should not be comprised of a series of sounds that each represents its piece of a message well. The whole of a concatenated auditory icon is not the sum of its parts. 
    more » « less
  4. Abstract The use of metaphor in cybersecurity discourse has become a topic of interest because of its ability to aid communication about abstract security concepts. In this paper, we borrow from existing metaphor identification algorithms and general theories to create a lightweight metaphor identification algorithm, which uses only one external source of knowledge. The algorithm also introduces a real time corpus builder for extracting collocates; this is, identifying words that appear together more frequently than chance. We implement several variations of the introduced algorithm and empirically evaluate the output using the TroFi dataset, a de facto evaluation dataset in metaphor research. We find first, contrary to our expectation, that adding word sense disambiguation to our metaphor identification algorithm decreases its performance. Second, we find, that our lightweight algorithms perform comparably to their existing, more complex, counterparts. Finally, we present the results of several case studies to observe the utility of the algorithm for future research in linguistic metaphor identification in text related to cybersecurity texts and threats. 
    more » « less
  5. Cyber-defenders must account for users’ perceptions of attack consequence severity. However, research has yet to investigate such perceptions of a wide range of cyber-attack consequences. Thus, we had users rate the severity of 50 cyber-attack consequences. We then analyzed those ratings to a) understand perceived severity for each consequence, and b) compare perceived severity across select consequences. Further, we grouped ratings into the STRIDE threat model categories and c) analyzed whether perceived severity varied across those categories. The current study’s results suggest not all consequences are perceived to be equally severe; likewise, not all STRIDE threat model categories are perceived to be equally severe. Implications for designing warning messages and modeling threats are discussed. 
    more » « less